Matrix1D Class
(CDPSim::Matrix1D)The Matrix1D provides basic vector functionality. More...
Header: | #include <Integration/Matrix1D.h> |
Public Functions
Matrix1D() | |
Matrix1D(int rows) | |
Matrix1D(const Matrix1D &m) | |
virtual | ~Matrix1D() |
void | Add(Matrix1D &output, double scalar) const |
void | Add(Matrix1D &output, const Matrix1D &increment) const |
void | Div(Matrix1D &output, double scalar) const |
double * | GetDatavaluesPointer() const |
double | Max() const |
double | Min() const |
void | Mult(Matrix1D &output, double scalar) const |
void | Print(const std::string &name, bool lineFeedAfter = true) const |
void | Reset(double value = 0.0) |
int | Rows() const |
void | SetDataPointersAndSize(double *datavalues, int size) |
void | SetDataPointersSizeAndInit(double *datavalues, int size, double value = 0.0) |
bool | operator!=(const Matrix1D &m2) const |
double & | operator()(int row) const |
Matrix1D & | operator*=(double value) |
Matrix1D & | operator+=(const Matrix1D &m) |
Matrix1D & | operator+=(double value) |
Matrix1D & | operator-=(const Matrix1D &m) |
Matrix1D & | operator-=(double value) |
Matrix1D & | operator/=(double value) |
Matrix1D & | operator=(const Matrix1D &m) |
bool | operator==(const Matrix1D &m2) const |
Detailed Description
The Matrix1D provides basic vector functionality.
Operators:
- () : Subscript operator to get or set individual matrix elements, A(i) = value, value = A(i).
- +, -, *, /, +=, -=, *=, /=: Matrix or scalar operation.
Element index starts at 0.
Member Function Documentation
Matrix1D::Matrix1D()
Default constructs an instance of Matrix1D.
Matrix1D::Matrix1D(int rows)
Default constructs an instance of Matrix1D.
Matrix1D::Matrix1D(const Matrix1D &m)
Copy constructor.
[virtual]
Matrix1D::~Matrix1D()
Destroys the instance of Matrix1D. The destructor is virtual.
void Matrix1D::Add(Matrix1D &output, double scalar) const
Adds every element of this matrix with scalar and stores the result in output
void Matrix1D::Add(Matrix1D &output, const Matrix1D &increment) const
Adds this matrix with the increment matrix and stores the result in output
void Matrix1D::Div(Matrix1D &output, double scalar) const
Divides each element of this matrix with scalar and stores the result in output
double *Matrix1D::GetDatavaluesPointer() const
Returns pointer to internal storage array.
double Matrix1D::Max() const
Returns the highest value in the matrix.
double Matrix1D::Min() const
Returns the smallest value in the matrix.
void Matrix1D::Mult(Matrix1D &output, double scalar) const
Multiplies this matrix with scalar and stores the result in output
void Matrix1D::Print(const std::string &name, bool lineFeedAfter = true) const
Outputs the content of this matrix to standard output.
void Matrix1D::Reset(double value = 0.0)
Resets all values in the matrix to value.
int Matrix1D::Rows() const
Get number of rows (size) in the matrix.
void Matrix1D::SetDataPointersAndSize(double *datavalues, int size)
Makes the matrix use as internal storage an array of datavalues of length specified by size.
void Matrix1D::SetDataPointersSizeAndInit(double *datavalues, int size, double value = 0.0)
Makes the matrix use as internal storage an array of datavalues of length specified by size. Values in the array are initialized to value.
bool Matrix1D::operator!=(const Matrix1D &m2) const
Test if A != B
double &Matrix1D::operator()(int row) const
Subscript operator for one dimensional matrix (that is, returns reference to first column).
Usage: value = A(i);, or A(i) = newValue;
Matrix1D &Matrix1D::operator*=(double value)
A *= value;
Matrix1D &Matrix1D::operator+=(const Matrix1D &m)
A += B;
Matrix1D &Matrix1D::operator+=(double value)
A += value;
Matrix1D &Matrix1D::operator-=(const Matrix1D &m)
A -= B;
Matrix1D &Matrix1D::operator-=(double value)
A -= value;
Matrix1D &Matrix1D::operator/=(double value)
A /= value;
Matrix1D &Matrix1D::operator=(const Matrix1D &m)
Assignment operator (A = B)
bool Matrix1D::operator==(const Matrix1D &m2) const
Test if A == B
Get started with CDP Studio today
Let us help you take your great ideas and turn them into the products your customer will love.