• Skip to main content
  • Skip to header right navigation
  • Skip to site footer
CDP Studio logo

CDP Studio

The no-code and full-code software development tool for distributed control systems and HMI

  • Doc
  • Why CDP
    • Software developers
    • Automation engineers
    • Managers
  • Products
    • Automation Designer
    • HMI Designer
    • Maritime HMIs
  • Services
  • Use cases
  • Pricing
  • Try CDP

CDP Studio Documentation

  • Framework - Automation
  • KalmanFilter
  • 5.0.0

KalmanFilter Class

(Automation::KalmanFilter)

Simple one dimensional linear Kalman filter operator More...

Header: #include <KalmanFilter>
Inherits: CDPOperator<T>
  • List of all members, including inherited members

Public Functions

KalmanFilter(const CDPPropertyBase &in)
virtual ~KalmanFilter()

Reimplemented Public Functions

virtual void Configure(XMLPrimitive *operatorXML) override
virtual unsigned int Process() override
  • 18 public functions inherited from CDPOperator
  • 17 public functions inherited from CDPOperatorBase
  • 49 public functions inherited from CDPBaseObject
  • 27 public functions inherited from CDP::StudioAPI::CDPNode
  • 22 public functions inherited from CDP::StudioAPI::ICDPNode

Additional Inherited Members

  • 1 public variable inherited from CDPOperatorBase
  • 1 static public member inherited from CDPBaseObject
  • 1 protected function inherited from CDP::StudioAPI::CDPNode
  • 8 protected variables inherited from CDPOperator
  • 5 protected variables inherited from CDPOperatorBase
  • 10 protected variables inherited from CDPBaseObject

Detailed Description

Simple one dimensional linear Kalman filter operator

This CDP operator can be used to filter measurement noise or inaccuracies using Kalman filter mathematics.

Arguments

Argument nameDescription
PNoiseCovKalman filter process noise covariance. Can be used to regulate the filtering characteristics (strenght)
MNoiseCovKalman filter measurement noise covariance. Can be used to regulate the filtering characteristics (strenght).
ErrorCovKalman filter initial estimation of error covariance. Can be used to regulate filter behaviour on first filtering cycles. Error covariance will be re-calculated on every cycle, therefore this argument has no effect after 2-3 calculation cycles.

When operator is used inside a signal its default input is automatically tied to signal's InternalValue or previous operator's output. Its default output is automatically tied to next operator's input or to signal's Value. See also CDP Operator Usage In CDP Signals.

Example

Below is an example plot of noisy signal (cyan) and the same signal with KalmanFilter operator applied (orange):

Actual Processing Code of the KalmanFilter

unsigned int KalmanFilter<T>::Process()
{
  // Set process noise covariance
  double procNoiseCov = 0.0;
  if (d->procNoiseCov)
  {
    CDPVariantValue procNoiseCov_v = d->procNoiseCov->GetVariantValue();
    procNoiseCov = procNoiseCov_v.GetConvertedValue<T>();
  }
  if (procNoiseCov != 0.0)
    d->SetIdentity2x2(d->KF.processNoiseCov, procNoiseCov);
  else
    d->SetIdentity2x2(d->KF.processNoiseCov, d->procNoiseCovDefault);

  // Set measurement noise covariance
  double measNoiseCov = 0.0;
  if (d->measNoiseCov)
  {
    CDPVariantValue measNoiseCov_v = d->measNoiseCov->GetVariantValue();
    measNoiseCov = measNoiseCov_v.GetConvertedValue<T>();
  }
  if (measNoiseCov != 0.0)
    d->KF.measurementNoiseCov(0) = measNoiseCov;
  else
    d->KF.measurementNoiseCov(0) = d->measNoiseCovDefault;

  // Set estimation error covariance (on first run only, because it starts to correct at every cycle)
  if (!d->errorCovInitialized)
  {
    double estErrorCov = 0.0;
    if (d->estErrorCov)
    {
      CDPVariantValue estErrorCov_v = d->estErrorCov->GetVariantValue();
      estErrorCov = estErrorCov_v.GetConvertedValue<T>();
    }
    if (estErrorCov != 0.0)
      d->SetIdentity2x2(d->KF.errorCovPost, estErrorCov);
    else
      d->SetIdentity2x2(d->KF.errorCovPost, d->estErrorCovDefault);
    d->errorCovInitialized = true;
  }

  // Do Kalman filtering cycle
  Matrix<double> prediction = d->KF.predict();
  d->measurement(0) = (double)m_input;
  d->KF.correct(d->measurement);
  m_output = static_cast<T>(prediction(0));

  return STATUS_OK;
}

See also Argument.

Member Function Documentation

KalmanFilter::KalmanFilter(const CDPPropertyBase &in)

Constructs a KalmanFilter with input in.

[virtual] KalmanFilter::~KalmanFilter()

Destructs the KalmanFilter opeator

[override virtual] void KalmanFilter::Configure(XMLPrimitive *operatorXML)

Reimplemented from CDPBaseObject::Configure().

[override virtual] unsigned int KalmanFilter::Process()

Reimplemented from CDPOperatorBase::Process().

Returns STATUS_OK.

The content of this document is confidential information not to be published without the consent of CDP Technologies AS.

CDP Technologies AS, www.cdpstudio.com

Get started with CDP Studio today

Let us help you take your great ideas and turn them into the products your customer will love.

Try CDP Studio for free
Why CDP Studio?

CDP Technologies AS
Hundsværgata 8,
P.O. Box 144
6001 Ålesund, Norway

Tel: +47 990 80 900
E-mail: info@cdptech.com

Company

About CDP

Contact us

Services

Partners

Blog

Developers

Get started

User manuals

Support

Document download

Release notes

My account

Follow CDP

  • LinkedIn
  • YouTube
  • GitHub

© Copyright 2025 CDP Technologies. Privacy and cookie policy.

Return to top